EC 831: Empirical Methods in Macroeconomics

Aeimit Lakdawala

Michigan State University

Primiceri (2005)

Time Varying Structural Vector Autoregressions and Monetary Policy

following the notation in the paper

$$
\begin{gathered}
y_{t}=c_{t}+B_{1, t} y_{t-1}+B_{2, t} y_{t-2}+u_{t} \\
\operatorname{Var}\left(u_{t}\right)=\Omega_{t}
\end{gathered}
$$

Stacking the coefficients into B_{t} and the lags into

$$
X_{t}^{\prime}=I_{n} \otimes\left[1, y_{t-1}^{\prime}, y_{t-2}^{\prime}\right]
$$

we get

$$
y_{t}=X_{t}^{\prime} B_{t}+u_{t}
$$

Triangular decomposition of variance matrix Ω_{t}

$$
\begin{gathered}
\Omega_{t}=A_{t}^{-1} \Sigma_{t} \Sigma_{t}^{\prime} A_{t}^{-1^{\prime}} \\
A_{t}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\alpha_{21, t} & 1 & 0 \\
\alpha_{31, t} & \alpha_{32, t} & 1
\end{array}\right) \\
\Sigma_{t}=\left(\begin{array}{ccc}
\sigma_{1, t} & 0 & 0 \\
0 & \sigma_{2, t} & 0 \\
0 & 0 & \sigma_{3, t}
\end{array}\right)
\end{gathered}
$$

$$
y_{t}=X_{t}^{\prime} B_{t}+A_{t}^{-1} \Sigma_{t} \varepsilon_{t} \quad \varepsilon_{t} \sim N(0,1)
$$

$$
B_{t}=B_{t-1}+v_{t}
$$

$$
\alpha_{t}=\alpha_{t-1}+\zeta_{t}
$$

$$
\log \left(\sigma_{t}\right)=\log \left(\sigma_{t-1}\right)+\eta_{t}
$$

$$
\operatorname{Var}\left(\begin{array}{c}
\varepsilon_{t} \\
v_{t} \\
\zeta_{t} \\
\eta_{t}
\end{array}\right)=\left[\left(\begin{array}{cccc}
I_{n} & 0 & 0 & 0 \\
0 & Q & 0 & 0 \\
0 & 0 & S & 0 \\
0 & 0 & 0 & W
\end{array}\right)\right]
$$

$B_{0} \sim N\left(\widehat{B}_{O L S}, 4 \cdot V\left(\widehat{B}_{O L S}\right)\right)$,
$A_{0} \sim N\left(\widehat{A}_{O L S}, 4 \cdot V\left(\widehat{A}_{O L S}\right)\right)$,
$\log \sigma_{0} \sim N\left(\log \widehat{\sigma}_{O L S}, I_{n}\right)$,

$$
\begin{aligned}
Q & \sim I W\left(k_{Q}^{2} \cdot 40 \cdot V\left(\widehat{B}_{O L S}\right), 40\right), \\
W & \sim I W\left(k_{W}^{2} \cdot 4 \cdot I_{n}, 4\right) \\
S_{1} & \sim I W\left(k_{S}^{2} \cdot 2 \cdot V\left(\widehat{A}_{1, O L S}\right), 2\right), \\
S_{2} & \sim I W\left(k_{S}^{2} \cdot 3 \cdot V\left(\widehat{A}_{2, O L S}\right), 3\right),
\end{aligned}
$$

Consider

$$
\begin{aligned}
k_{Q} & =\{0.01 ; 0.05 ; 0.1\} \\
k_{S} & =\{0.01 ; 0.1 ; 1\} \\
k_{W} & =\{0.001 ; 0.01\}
\end{aligned}
$$

Pick $k_{Q}=0.01, k_{S}=0.1$ and $k_{W}=0.01$

- Model Selection technique known as Reversible Jump Markov Chain Monte Carlo (RJMCMC)

Standard Deviation of Residuals

Figure: a)Inflation, b)Unemployment, c)Interest Rate

Impulse Response of Inflation: Monetary Policy Shock

Figure: (b) difference between 1975:I and 1981:III, (c)1975:I and 1996:I, (d) 1981:III and 1996:I

Impulse Response of Unemployment: Monetary Policy Shock

(c)

(b)

(d)

Figure: (b) difference between 1975:I and 1981:III, (c)1975:I and 1996:I, (d) 1981:III and 1996:I

Interest rate response to 1% increase in inflation

Interest rate response to 1% increase in inflation

Figure: (a) Simultaneous response, (b) response after 10 quarters, (c) response after 20 quarters, (d) response after 60 quarters.

Interest rate response to 1% increase in unemployment

Interest rate response to 1% increase in unemployment

(c)

Figure: (a) Simultaneous response, (b) response after 10 quarters, (c) response after 20 quarters, (d) response after 60 quarters.

Counterfactual: Monetary policy rule of '91-'92 in '70s

Figure: a)Inflation, b)Unemployment
"...variation in the variance covariance matrix crucial for analyzing the dynamics of the contemporaneous relations..."
"...little evidence for a causal link between changes in interest rate systematic responses and the high inflation and unemployment episodes"

Original Algorithm in Primiceri (2005) paper

The parameters are

- Σ^{T}
- B^{T}
- A^{T}
- V
- s^{T}

Let $\theta=\left(B^{T}, A^{T}, V\right)$.
So now we have 3 blocks
(1) θ
(2) s^{T}
(3) Σ^{T}

Original Algorithm in Primiceri (2005) paper

(1) Draw Σ^{T} from $p\left(\Sigma^{T} \mid y^{T}, \theta, s^{T}\right)$
(2) Draw s^{T} from $p\left(s^{T} \mid y^{T}, \Sigma^{T}, \theta\right)$
(3 Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}\right)$

What is wrong here?

Original Algorithm in Primiceri (2005) paper

(1) Draw Σ^{T} from $p\left(\Sigma^{T} \mid y^{T}, \theta, s^{T}\right)$
(2) Draw s^{T} from $p\left(s^{T} \mid y^{T}, \Sigma^{T}, \theta\right)$
(3 Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}\right)$

What is wrong here?
The last step should be 3) Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}, s^{T}\right)$
Compare with univariate stochastic volatility algorithm
Can we just replace the last step with 3) Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}, s^{\top}\right)$?

Original Algorithm in Primiceri (2005) paper

(1) Draw Σ^{T} from $p\left(\Sigma^{T} \mid y^{T}, \theta, s^{T}\right)$
(2) Draw s^{T} from $p\left(s^{T} \mid y^{T}, \Sigma^{T}, \theta\right)$
(3 Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}\right)$

What is wrong here?
The last step should be 3) Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}, s^{T}\right)$
Compare with univariate stochastic volatility algorithm
Can we just replace the last step with 3) Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}, s^{T}\right)$?

No. Let's see why.

Original Algorithm in Primiceri (2005) paper

The model is

$$
y_{t}=X_{t}^{\prime} B_{t}+A_{t}^{-1} \Sigma_{t} \varepsilon_{t} \quad \varepsilon_{t} \sim N(0,1)
$$

We transform in the following way

$$
A_{t}\left(y_{t}-X_{t}^{\prime} B_{t}\right)=\widetilde{y}_{t}=\Sigma_{t} \varepsilon_{t}
$$

Now square both sides and take logs

$$
\begin{aligned}
\log \left(\widetilde{y}_{t}^{2}\right) & =2 \log \left(\sigma_{t}\right)+\log \left(\varepsilon_{t}^{2}\right) \\
y_{t}^{*} & =2 \log \left(\sigma_{t}\right)+\varepsilon_{t}^{*} \\
\varepsilon_{t}^{*} \mid s_{t}=i & \sim N\left(m_{i}-1.2704, v_{i}^{2}\right) \\
P\left(s_{t}=i\right) & =q_{i}
\end{aligned}
$$

Original Algorithm in Primiceri (2005) paper

So conditional on $s_{t}, \varepsilon_{t}^{*}$ is normal

$$
\varepsilon_{t}^{*} \mid s_{t}=i \sim N\left(m_{i}-1.2704, v_{i}^{2}\right)
$$

But conditional on s_{t}, ε_{t} is not normal

$$
\varepsilon_{t}\left|s_{t}=\sqrt{\exp \left(\varepsilon_{t}^{*}\right)}\right| s_{t} \sim ?
$$

Corrected Algorithm

Just switch the order
(1) Draw Σ^{T} from $p\left(\Sigma^{T} \mid y^{T}, \theta, s^{T}\right)$
(2) Draw θ from $p\left(\theta \mid y^{\top}, \Sigma^{T}\right)$
(3) Draw s^{T} from $p\left(s^{T} \mid y^{T}, \Sigma^{T}, \theta\right)$
where the old algorithm was
(1) Draw Σ^{T} from $p\left(\Sigma^{T} \mid y^{T}, \theta, s^{T}\right)$
(2) Draw s^{T} from $p\left(s^{T} \mid y^{T}, \Sigma^{T}, \theta\right)$
(3) Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}\right)$

Corrected Algorithm

Why does this work? The trick is to use a different blocking scheme:

Consider the blocks 1) Σ^{T} and 2) (s^{T}, θ). We want draws from
(1) $p\left(\Sigma^{T} \mid y^{T},\left\{\theta, s^{T}\right\}\right)$ and
(2) $p\left(\left\{\theta, s^{T}\right\} \mid y^{\top}, \Sigma^{T}\right)$

Now factor the joint posterior $p\left(\left\{\theta, s^{T}\right\} \mid y^{T}, \Sigma^{T}\right)$ into

- $p\left(\theta \mid y^{\top}, \Sigma^{T}\right) p\left(s^{\top} \mid \theta, y^{\top}, \Sigma^{T}\right)$

So we can draw from the marginal and conditional to get a draw from the joint

Corrected Algorithm

(1) Draw Σ^{T} from $p\left(\Sigma^{T} \mid y^{T}, \theta, s^{T}\right)$
(2 Draw θ from $p\left(\theta \mid y^{T}, \Sigma^{T}\right)$
(3) Draw s^{T} from $p\left(s^{T} \mid y^{T}, \Sigma^{T}, \theta\right)$

The key is to draw Σ^{T} right after drawing s^{T}.

